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Abstract—The continuum mechanics is formulated for the inelastic behavior of a ceramic material
containing particles of a second phase ceramic which undergo a martensitic phase transformation
when a function of the macroscopic stress state attains a critical value. A constitutive law is derived
which is applicable to such materials viewed as composites. The constitutive law is similar in
structure to the incremental (or flow) theories of metal plasticity in that it is characterized by a yield
function (relating the critical values of the components of the stress state), a loading criterion
(specifying the condition for continued deformation) and a set of flow equations (relating the
increments of inelastic strains to the macroscopic stress state). Explicit forms of the constitutive law
are presented for the cases in which the second phase particles are either spheres or thin oblate
spheroids. The inelastic constitutive law is used to predict the toughness enhancement measured in
ceramics which are strengthencd by second phase particies (usually ZrQ,) which undergo both
dilatational and shear irreversible transformations in the presence of a macroscopic crack. The near-
tip stress intensity factor is related to the applied stress intensity factor for stationary and growth
macroscopic cracks. Toughening is associated with crack growth and is due to the wake of trans-
formed particles which are left behind a growing crack. The results show the importance of
accounting for both the shear and dilatational components of the transformation as well as the
importance of orientation effects on the values of the toughness enhancement.

1. INTRODUCTION

Within the last ten years or so, a remarkable mechanism has been discovered according to
which the fracture toughness of ceramic materials can be greatly enhanced : according to
the transformation toughening mechanism, inclusions of zirconia (ZrQ,) within a matrix
of another ceramic can be made to retain metastably their tetragonal crystal structure down
to room temperature and to transform irreversibly to monoclinic only in the presence of
the high stresses near the tip of a macroscopic crack(1]. The transformation alters the stress
distribution near the crack tip by decreasing the net near-tip stress intensity factor and the
toughness of the material is thus greatly enhanced[2-5].

An important aspect of the transformation of ZrO, particles from tetragonal to mono-
clinic is the size effect[6, 7]. If the particles are too small, they do not transform to monoclinic
in the presence of a macroscopic crack. When the particles are too large, they transform to
monoclinic during fabrication and they are not available for the tetragonal to monoclinic
transformation in the presence of a crack. Hence, in either case, the toughening effect due
to the transformation is lost, although not entirely[8]. Furthermore, the transformation
from tetragonal to monoclinic is martensitic[l] and, as such, it has drawn considerable
attention{9].

According to whether the ZrO, particles are unconstrained or constrained by a sur-
rounding matrix, the final morphology of the monoclinic particles varies. When uncon-
strained, a single crystal of tetragonal ZrQO, transforms spontaneously to the monoclinic
crystal structure. The unconstrained transformation is accomplished by a volume expansion
of 3-5% and a shear of about 16%[10].

When the ZrO, particles are constrained by the surrounding matrix, they can be made
to retain their tetragonal crystal structure if they are of the proper size and when the ceramic
has been partially stabilized by alloying with Y,0,, MgO or CaO. Optimum microstructures
are those that contain a homogeneous distribution of coherent tetragonal ZrQ, particlesf11].
The ZrO, particles are spherical when found in a matrix of Al,O,, or thin oblate spheroids
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when found in partially stabilized zirconia (PSZ). In PSZ the ZrO, particles usually arrange
themselves in three mutually orthogonal directions[12]. When the ceramic is stressed
sufficiently, the ZrO, particles transform to monoclinic by twinning which occurs in order
to relieve the large shear component of the strain energy that would accumulate if twinning
had not taken place. However, in addition to the volumetric transformation straining which
is still 3-5% on the average over the particle, it is possible to have either short or long
range shear transformation strains, i.e. the twinning may be such that the average shear
transformation strain over the volume of the particle vanishes or does not vanish, respect-
ively.

McMeeking and Evans[13] took into account only the dilatant part of the trans-
formation and predicted increases in toughness which were in the same range as (but
underestimated) the experimental data. Furthermore, Budiansky er al.[14] proposed a
nonlinear mean stress-dilatation relation for the composite which allowed for unloading or
loading in parallel to the classical theory of incremental plasticity. The advantage of
the approach of Budiansky et al. was that it overcame the difficulty of accounting for
microstructural details by postulating a relevant phenomenological description for the
composite. Since only dilatational effects were taken into account, the shape of the trans-
forming particles was irrelevant in the work of McMeeking and Evans[13] or Budiansky er
al[14].

In the present paper we propose a constitutive relation in the same vein as Budiansky
et al.[14]. The constitutive law, presented in Section 2, takes into account both the volumetric
and shear components of the transformation strain, as well as the shape and orientation of
the transformed particles. The constitutive law is valid for systems with sufficiently small
particles and spacing between particles such that the transformation zone at the crack tip
includes many particles. Thus, a continuum description of the composite system can be
developed.

Section 4 applies the proposed constitutive relation to the evaluation of the enhance-
ment in the stress intensity factor (SIF) for a stationary crack and it is shown that greatly
enhanced toughness cannot be attributed to the transformation zone at the tip of a stationary
crack. Section 5 contains the calculation of the toughness enhancement due to the trans-
formed particles left behind in the wake of a crack tip that advances stably and quasi-
statically. Finally, the maximum possible toughness is determined and compared to
available experimental data.

2. CONSTITUTIVE LAW

In this section the goal is to replace the inhomogeneous composite by a homogeneous
material characterized by a nonlinear constitutive relation. Thus, we consider a sample of
material which is made of a linear elastic matrix and of particles which are characterized
by the stress-free transformation strain & and have the same elastic moduli as the matrix.
We assume that all particles have the same orientation and the same shape but possibly
different sizes. Thus, we denote by a the size of a typical particle. To develop the constitutive
law in the spirit of continuum mechanics, we further assume that the sample contains
sufficiently many particles so that the volume concentration dc of particles with sizes
between a and a+da is given by

de = g(a)da. M
We imagine that the composite is loaded by average uniform stresses 6; while the

volume concentration of particles that have actually transformed is c¢. The value of c is
found by

¢= f " g, @
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where g(¢) is defined by eqn (1) and the order of the limits reflects the fact that the larger
particles will transform before the smaller ones according to the size effect mentioned in
the Introduction.

The average stresses 6; are related to the average matrix stresses g}/ and to the stresses
of within the particles by

G, = cof+(1—c)al. €)

The particle stresses ¢§ can be found by employing the classical Eshelby results{15). Hence,
the matrix stresses g}f can be expressed in terms of the average stresses &, the volume
concentration ¢ of transformed particles and the transformation strain ¢f. Thus, any
formulation in terms of g} is equivalent to another in terms of 5. It is found, however,
that the use of g}/ is more convenient at this stage.

The fact that a volume concentration ¢ of the particles has transformed while the
current matrix stress state is g} is expressed by an equation of the form

Ra}h) = H(c). 4

This equation is called the critical transformation condition in analogy to the theory of
plasticity. It will be shown in the sequel that the functions F and H are such that H(c) is a
monotonically increasing function of ¢, and, hence, the requirement that the loading
must increase for the volume concentration of transformed particles to further increase is
expressed by

dF(el) > 0, ®)

where d() signifies the increment of (). This equation is the criterion for continued trans-
formation in analogy to the loading criterion of the theory of metal plasticity.

When eqn (5) is satisfied, the corresponding increment dc is found by considering the
increment of eqn (4). dc gives rise to an accompanying increment dej; of the inelastic strains
which is porportional to dc, i.e.

det = g,(e™)de. (6)

Equation (6) is referred to as the flow rule and it completes the description of the constitutive
relation,

It must be noted that the right-hand side of eqn (4) can be identified with a yield stress
as in plasticity theory where, although the yield stress can be related to the microstructure
of the metal, it is standard practice to determine the yield stress by an independent tensile
experiment. In the sequel it will be shown that the function H(c) of eqn (4) can be related
in principle to the microstructure of the material, but it is suggested that H(c) should be
determined by an independent experiment and by fitting eqn (4) to the relevant data. On
the other hand, it can be also argued that such an experiment is extremely difficult to
perform as the stresses necessary to induce the transformation from tetragonal to monoclinic
in ZrO, particles are very high and as such can be found only near severe stress raisers such
as crack tips.

To completely specify the constitutive law, the functions F and g, of eqns (4) and (6)
respectively must be determined, i.e. we need a physical statement describing the conditions
for transformation and the corresponding increments in the accompanying inelastic strains.
This will be done by considering an isolated ellipsoidal particle of size a embedded coherently
within a matrix of nontransforming linear elastic material which is loaded by the uniform
stresses o). The elastic moduli of the particle are taken to be the same as of the matrix.

Let us imagine that when o}f = 0 the inclusion does not transform, but as ¢}/ is raised
to some critical level the inclusion transforms (transformation characterized by &}) and
does so in a way that allows the formation of the twinned structure discussed in the
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Introduction. For the transformation to take place, it is necessary that the change AG in
Gibbs free energy of the system (matrix and particle) be nonpositive, i.e.

AG = AG;, <0, @)
where AG is written as

AG = AE,.4+AE,. ®)

It is obvious that eqn (7) does not describe fully the necessary and sufficient conditions
for transformation. Since AG is the difference in free energy between the final (monoclinic)
and initial (tetragonal) states, any statement such as eqn (7) neglects the kinetics of the
transformation. A more proper treatment might be to consider the circumstances under
which an initial monoclinic embryo within the tetragonal particle will spread unstably
throughout the whole particle. However, we propose to use eqn (7) as a guideline in deriving
the multiaxial stress dependence of the function F of eqn (4). The motivation for this
assumption is that the primary dependence of AG on o enters through AE,,.,, and this
dependence can be determined using the basic work of Eshelby[15], as will be done below.

In eqn (7), AG, is the critical value that AG must attain for the transformation to be
thermodynamically favorable. AG,;, may depend in general on the size a of the particle, on
the temperature, as well as on the alloying content{5]. In eqn (8), AE,.., is the change in
mechanical potential energy of the system (particle and matrix) when the particle transforms
from tetragonal to monoclinic. A lucid description of AE, ., is given in the recent book by
Mura[16]. Finally, AE, in egn (8) denotes collectively several terms : the change in chemical
energy ; the change in surface energy which is attributed to two sources (surface energy
changes in the interface between the particle and the matrix, and surface energy changes
due to the interface between the twinned bands). Lastly, AE; contains the strain energy
accumulated in the matrix due to the formation of the twins. Evans et al.[6] estimated this
last contribution for a spherical particle with equispaced bands and showed that it is
localized near the particle-matrix interface and does not depend on the stress o'.

It can be noted that for an ellipsoidal particle with uniform transformation strain ]
which is embedded coherently within an infinite elastic matrix loaded remotely by o¥, the
term AE,,.., can be calculated exactly[15]. It is given by

AEpeen = — Vy(olf +d0))e], ©)

where ¥, is the volume of the particle and o} is the stress in the particle due solely to ] (i.e.
in the absence of ¢}) which is given by

.0 5 = Lx]kl(sklmn = Tiimn)Emns (10)

where L is the elastic stiffness tensor of both particle and matrix, S is Eshelby’s tensor and
1is the identity tensor. Finally, we note that the stress in the particle after transformation
is

of = ol+all. an

When the expression for AE,,.;, from eqn (9) is substituted into eqn (8) and then into
eqn (7), we find the critical transformation criterion to be

Eo - AGt:ril

R
4

(12)

Thus, for a suitably chosen &] (possibly depending on ¢f) we propose to relate the left-
hand side of eqn (12) to the function F(c}) of eqn (4).
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To complete the description of the transformation it is necessary also to model the
creation of the twinned structure upon transformation and, hence, determine ¢] in eqn (12).
Microscopy reveals that the structure of the twins within the transformed particles is quite
complicated[9, 17, 18]. Often more than one family of twins is observed and the thickness
of the alternating bands is size dependent[17]. Although twinning relieves some of the shear
component of the strain energy due to transformation, it appears that not all of the shear
strain energy is annihilated by twinning{12]. On the other hand, twinning takes place along
well-defined crystallographic directions on crystallographic planes. Although many of these
twin systems have been identified[9, 12, 19], it is still not clear what systems are operative
under what conditions. Hence, the question arises of how to account properly for twinning.

Twinning does not alter the volumetric component &7 (3-5%) of the transformation
strain. Furthermore, we assume that there is a nonvanishing average deviatoric component
e] in the transformation strain which we find by postulating the following. The location of
the twinned variants within each family and the thickness ratios of the various bands adjust
suitably upon transformation so that at the instant just after transformation the deviatoric
component of stress within the particle has been reduced to zero, i.e.

s§=0, (13)

where
(14)

Obviously eqn (13) neglects the directional character of twinning which may not be valid
for smaller particles[17]. Equation (13) could only be rigorously correct if the particle had
infinitely many twin systems and we expect, thus, that (13) should overestimate the effect
of twinning. Finally, we observe that eqn (12) implies that at transformation the particle
acts, in effect, like a liquid particle which cannot support any shearing load and which
undergoes a uniform dilatation ¢].

When we substitute from eqns (10) and (11) into eqns (13) and (14) we get

sy’
(Tjr— Syu+ ‘55,','smmk1)e[1 = ﬁ +‘§8Zp(sg'kk - *‘SijSmmkk)’

where G is the shear modulus of the material (assumed isotropic) and e; is the strain deviator
defined by

e‘,- = Ey— %Bppay.

The equations above can be solved for e, thus yielding
e = Aust{ + Kemm (15)

where the tensors A and K depend on the elastic moduli and on the shape of the particle.
We reiterate that eqn (15) yields the average (over the particle) of the deviatoric trans-
formation strain and is much smaller than the 16% stress-free shear strain that the particle
would undergo if it were unconstrained.

In the remaining part of the section, we will illustrate how the use of eqns (15) and
(12) leads to the stress dependence of the function F of eqn (4) for spherical particles. The
form of F for thin oblate spheroidal particles is obtained similarly and is shown in the
Appendix.
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For spherical particles, eqn (15) reduces to

M
el = 0
Y 26(1-B)’
(16)
_34—5v
15 1-v
whereas (10) gives
ot = — B(1 —a)el, an
_ 114v
=315y

where B is the bulk modulus and v is Poisson’s ratio. Substituting from (16) and (17) into
eqn (12) and dividing through by the quantity B(e])? we get

(a:')z o¥  AE,—AG;

m ;‘0' +E—W+%(I_Q)EP(‘ZL (18)

where

_ B _S 1—v?
T 6G(1—p)  3(1-2v)(7T-5v)"

m
po= Bel,
02 = 4sy8;.

Thus, the left-hand side of (18) is identified with the function F(g}/) for spherical particles

O'M 2 O'M
Folf =m(—’) —. 19
(@) Po/  Po (19)

Finally, we incorporate the size effect by assuming that the dependence of P(a) on the size
a [eqn (18)] is such that

dp
da <0 (20)

The form of the function F for thin oblate spheroids is listed in the Appendix. In either
case, we can write

F¥) = P(a) @1

as the critical condition for transformation.

Now we can return to our original problem in which we had considered a collection
of similarly shaped and oriented ellipsoidal inclusions by interpreting the size a of eqn (21)
as the size of the smallest particle that has transformed while the current stress state in the
matrix is o). Equation (2) can be inverted to yield

a = a(c),
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which, when substituted into eqn (21), yields
Falf) = H(c), “)

where we have denoted H{c) = P(a(c)). Since dc/da < 0 and dP/da < 0 from eqns (2) and
(20), respectively, we conclude that

0 22)

as outlined in the discussion of eqn (4).

Supposing that ¢} increases according to the criterion for continued deformation, eqn
(5), the increment dc in the volume of transformed particles gives rise to the increment def
in the inelastic strains according to

deZ = ¢l de,

23
de} = el de, @)
where the value of e is provided in general by eqn (15). The specific form of e] for spherical
or thin ablate spheroidal particles is given in eqn (16) and in the Appendix, respectively.
Thus, the flow rule is completely established.
Although the flow rule was derived from first principles, it can be shown that the
inelastic strain increments are parallel to the normal of the function F{o¥) in o}¥-space, i.e.

oF

oo}

def =R de,

where R is a constant of proportionality. Normality is not fortuitous: general arguments
have been put forth by Rice[20], who showed that a transformation criterion such as eqn
(7) with AG.,;, independent of ¢} must necessarily obey normality.

3. STRESS-INDUCED TRANSFORMATION NEAR A CRACK TIP

As stated in the previous section, the transformation of ZrQ, particles constrained
within a nontransforming ceramic matrix requires high stresses which can be found only
near severe stress raisers such as cracks. Thus, we propose to study the effect of trans-
formation near a crack tip. The results concerning the toughness enhancement are different
for the cases of stationary or growing cracks. In this section we will discuss the formulation
of the problem of correlating the nominal loads to the near-tip stresses irrespective of the
stationary or growing nature of the crack. In the subsequent sections we will present the
results of our analysis as they apply to stationary or growing cracks.

We consider the case of a macrocrack of length b within a specimen of material
characterized by the constitutive law derived in the previous section, The specimen is loaded
in mode I and we assume that plane strain conditions prevail near the crack tip. Because
of the high stresses that develop in the neighborhood of the crack tip, the material near the
crack tip undergoes the stress induced transformation discussed in the Introduction and as
a result a region Q develops near the tip within which the material is transformed. A typical
dimension of such a transformed region is only a few microns in extent{12}. Thus, the height
of the transformed zone Q is small compared to any other relevant length scales. Under
this “‘small scale transformation” condition, an asymptotic problem for a semi-infinite crack
can be formulated as follows.

With the small scale transformation condition, the stresses remote from the crack tip
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are given by

where K, is the elastic stress intensity factor (SIF) which is determined for the actual
geometry of a cracked specimen under a given load. K, is referred to as the applied SIF:
its critical value is what is determined in a standard fracture toughness test. Under the
assumption of mode I plane strain, the functions f;(6) are universal and they are defined
so that f5,(0) = 1. Hence, on the line 8 = 0 the normal stress is given by

Gy = Ko (r > 0)
2 @) '

On the other hand, as the crack tip is approached asymptotically the material is fully
transformed and responds to applied loads in an incrementally linear manner. Thus, as
r — 0 the stress field has the same spatial dependence as in eqn (24) but now, in general,
the SIF is different, i.e.

hp -0).
0= Jen )fy(e) (r-0) 25)

It is assumed that K,;; is the parameter that governs the fracture process near the crack
tip. When there is no transformation X, equals K, ; hence, it is the reduction from X, to
K, that determines the toughness enhancement due to transformation. We relate K;;, to
K, by writing

Klip = Ay + AKlip’ (26)

where

AKﬁp = J.J. dKlip' (27)
Q

In eqn (27), Q is the upper half of the transformed region and dXj;, is the enhancement in
the SIF under plane strain mode I conditions due to two differential elements -of area dA4
undergoing a transformation strain. The first is located at (r, f) with respect to the crack
tip and it is characterized by the stress-free strains B4, E%,, EX, whereas the second is
located at (r, —p) and undergoes the stress-free strains F%,, E%,, —E%, so that mode I
conditions prevail, as shown in Fig. 1. The explicit form of dK,, has been reported by

T.T T
EII'EZZ'EIZ

Ares A

T T T
EinExrEp,

Fig. 1. Two symmetrically placed inclusions of circular cylindrical shape in the presence of a semi-
infinite crack (mode I).
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Hutchinson[21] and for infinitesimal d4 it is given by

1 EdA

L oEmme— -32 '
dk,, T —i M(E%;, B), (28)
where
3 5
M(Es;, B) = E, cos% +3E‘;2cos%'§sin B+ E(E’;;—Eﬁ D sinﬁsin—zg. (29)

In the expressions above Greek indices take the values 1, 2 whereas Latin indices take the
values 1, 2, 3.

The constitutive relations of Section 2 are valid for a three dimensional solid, while
the analysis in this section is specialized to plane strain conditions. We easily show that the
inelastic strains ] in a 3-D material result in a set of in-plane inelastic strains E3, given by

14+v
B, = ——¢i—vel,+é,,

3
T+v
EEZ = '_3— Il-veﬁy'*'e‘ib (30)
E’;Z = eqh

when the plane strain conditions ¢, = 0 are enforced. Thus, we note that in order to
calculate AK,;, from eqn (27), we need to know the shape and extent of the transformed
zone Q as well as the inelastic strains E, (or, equivalently &f from eqn (30)) within Q.

In Sections 4 and 5 we will carry out the calculation outlined in this section for the
cases of stationary and steadily growing cracks, respectively. We will further discuss the
shape and orientation effects by considering spherical and thin oblate spheroidal particles
separately.

4. SIF ENHANCEMENT FOR STATIONARY CRACK

Before proceeding we briefly present the results of Budiansky ez al.[14] who neglected
any shear effects and considered the case in which the transforming particles were allowed
to undergo only a volumetric stress-free strain &]. Their results are independent of particle
shape and they further showed that for a stationary crack under monotonically increasing
loading

Kip = Ko €)Y

implying that there is no toughness enhancement. The same conclusion (under more restric-
tive assumptions) was reached by McMeeking and Evans{13] as well.

For a stationary crack under monotonically increasing loading the qualitative features
of the near-tip region are shown schematically in Fig. 2(a). Denoting by ¢, the total volume
concentration of particles that may transform, we observe that near the tip there is a region
in which all particles have transformed (c = ¢,) due to the high stresses. Next, there is a
partially transformed region (0 < ¢ < ¢,) in the sense that some (but not all) of the particles
are transformed and, finally, a region in which no transformation has occurred (¢ = 0).
Figure 2(b) shows the same regions for the case in which all particles are identical. Near the tip
we have a fully transformed region (¢ = ¢,), whereas further out no transformation has taken
place. The calculations to be reported in this section are valid for the case in which all particles
within the transformed zone are actually transformed as shown in Fig. 2(b).

As the boundary of the transformed region Q is approached from outside, no trans-

SAS 22:10-C
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C=0

C-0

Fig. 2. Schematic representation of the transformed region for a stationary crack loaded mono-
tonically: (a) some (but not all) particles transformed, (b) all particles transformed within the
transformed region £2.

formation has taken place and, hence, the average matrix stresses g)f are equal to the
average overall stresses 6. Furthermore, we assume that the level of transformation (as
measured by coe]) within Q is small enough so that the stress state as the boundary of Q is
approached from outside is approximately given by the unperturbed elastic solution, eqn
(24). Thus, under monotonically increasing K, we find the boundary R() of Q by using
the critical transformation equation (4) and eqn (24), i.e.

R&) = Hic) = 4,

32
=Ko £:6) e
" J@RRE)
R(6) is found explicitly by eliminating ¢; from the two equations above.
The 3-D inelastic strains are found by employing eqn (6) in the form
= cogy(a™) 33)

and, finally, we relate the average §; and matrix sff deviatoric stresses on the boundary R(6)
of Q by

5= (1=coslf (34

as transformation takes place under vanishing s§ within the particles as discussed in Section
2. The use of eqns (33) and (34) allows the complete determination of the 3-D inelastic
strains & within Q, and, hence, of the effective in-plane inelastic strains B, from eqn (30).
Thus, we may evaluate AK,;, by the double integral of eqn (27).

For the case of spherical particles the function F(g) is given by eqn (19) and the 3-D
inelastic strains are provided by eqns (23) where e] is given by (16) with s} evaluated on
the boundary R(6) of Q . To show the results for AK,;, for spherical particles we denote the
right-hand side of the first of eqns (32) by A,; we evaluated AKy;, for the limiting cases of
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small or large 4,. We found (for v = 0.3)

%‘h —0.174+qAo+0(43), A,-0,

AKw 1 43
—%® = —0.09—, Ay— 0,

oK JAo ¢

where ¢ is a positive number which has not been evaluated. The first of eqns (35) was
derived analytically, whereas the second of (35) required a simple numerical integration.
The effect in the SIF enhancement that is predicted by eqns (35) is very small as will be
shown below.

We next discuss shape effects by studying the case where the transforming inclusions
are thin oblate spheroids. It is obvious that we have to take into account orientation effects,
i.e. the fact that due to their shape the particles have a given orientation with respect to the
crack plane. We examine the influence of orientation on the SIF enhancement by assuming
that all particles have the same orientation. _

Three different orientations are considered as shown in Fig. 3 where they are labelled
L, L, and L,, respectively. Now the function F of eqn (32) is given by eqn (A1) of the
Appendix and we identify the right-hand side in the first of (32) by 4,, 4, and A4, according
as to whether the orientation is L,, L, or L;, respectively. The functions g; of eqn (6) are
provided in eqn (A2) of the Appendix and, thus, AKj;, can be calculated by the double
integral of eqn (27). The integral was evaluated numerically and the results for the orien-
tations L,, L, and L, are shown in Figs. 4, 5 and 6, respectively, where AK;;/coK, is plotted
as a function of A,, 4, or A, for two values of the aspect ratio 2 of the particles.

From eqns (35) or from Figs. 4-6 we note that AKy;, < 0 implying, from eqn (26), that
K, < K. Thus, the effect of transformation is to relieve the stresses in the neighborhood
of the crack-tip. Furthermore, by comparing Figs. 4-6 we observe that the effect of orien-
tation L, is more beneficial than orientations L, and L,. Lastly, we observe that AK,;, is
maximized as 4;— 0: As 4, is proportional to the level of critical stressing required for
transformation, viz. eqn (32), we must exclude the limiting case of very small 4; as such
particles will transform prior to the introduction of the crack.

To get an estimate of AK,;,/K., we employ eqns (35) by using a typical value ¢, = 0.3.
We get that AK,;,/K,, = —0.05 for spherical particles. To estimate the effect of orientation
L, we neglect the contributions of L, and L, (as they are much smaller than that of L))
and we use Fig. 4 from where we get that the maximum contribution is AK;,/coKs = —0.7.

[N)
<=
—
]

e !

~n

O

3@ !
Fig. 3. Three possible orientations of an oblate spheroid with respect to the crack plane.
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a KT!P/ coKm
Fig. 4. SIF enhancement vs 4, (orientation L,) for a stationary crack.

Using a typical value for ¢y, ¢, = 0.1 (as in reality equal amounts of each orientation are
present[12]), we conclude that AK,,/K,, = —0.07. We conclude that whether the particles
are spherical or equidistributed oblate spheroids, the effect of the transformation is to
enhance the SIF but only by a very small amount which cannot account for the much larger
increase in toughness measured in the laboratoryf4, 5, 7, 12, 17].

5. TOUGHNESS ENHANCEMENT FOR STEADY-STATE QUASI-STATIC CRACK GROWTH

Having discussed the stationary crack, we proceed to consider the growing crack. We
assume that the crack starts to grow and continues to grow quasi-statistically with Kj;,
maintained at a critical value. The applied SIF K, increases with crack advance. For the
case of uniform particles characterized by purely dilatational transformation, McMeeking
and Evans{[13] showed that the applied K, increases with crack advance and that it
approaches a constant steady-state value after a small amount of crack advance. In an
actual toughness test the steady-state value of K, is not reached because the crack will run
unstably at a smaller value of the applied K,,. However, the value of X, at which the crack
will grow unstably is expected to be close to the steady-state values as argued by Budiansky
et al[14). Thus, calculation of the steady-state value provides the maximum possible
toughness enhancement.

As the crack grows, it leaves behind it a wake of transformed particles. The height of
the wake is denoted by H as shown in Fig. 7(a). Two different regions exist within the
wake: A fully transformed region in which all the particles have transformed (¢ = ¢,); and
a partially transformed region in which some (but not all) of the particles have transformed.
Loading takes place in the forward part of the transformed region as shown in Fig. 7(a).
Figure 7(b) shows the same regions when all the particles are identical so that all particles

2 4 Ay

-002

-0.04

Fig. 5. SIF enhancement vs A4, (orientation L,) for a stationary crack.
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-0.06f

-0.12

Fig. 6. SIF enhancement vs A, (orientation L) for a stationary crack.

are transformed within the transformed zone Q. The results to be reported in this section
are applicable to this last case.

Under the small scale transformation condition, the only relevant length scale is the
height H of the wake as shown in Fig. 7. Thus, the stresses remote from the crack tip and
outside the wake are given by eqn (24). Furthermore, the stresses are unchanged for an
observer moving with the crack tip due to the steady-state assumption.

Before proceeding to use the constitutive relations of Section 2, we will review and
present two special cases which are worth noting due to their simplicity. The first case
corresponds to purely dilatational behavior (with &f = ¢™) and has been presented by
McMeeking and Evans[13] and by Budiansky e? al.[14]. The critical transformation con-
dition is

O = O, (36)
Om = i iis
where ¢, is the (constant) magnitude of the mean stress required for transformation. Under

these circumstances, the toughness enhancement can be easily found by the method of

partially transformed wake

j fully transformed wake rtial
4 ransforme d
I 0<C<Cy 7 loading zone
L AR £ 0<C<C,
H i
€=Co \
(A) AE—
/
!
|-
--------- ~ tully
> teansformed
losding zore
csc,
X2
C:0
H C=C, E(t’)
®) ¢ —x,
0

Fig. 7. Schematic representation of the transformed region for steady-state quasi-static crack
growth: (a) some (but not all) particles transformed, (b) all particles transformed within the
transformed region 0.
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Section 3 (see also[14]) as

Ecye”

1—v

AK;, = —0.214 JH. (37)

Another interesting special case is to consider spherical particles that will transform
when the largest principal stress achieves a critical value g,. We assume that transformation
is such that the only component of the transformation strain is ¢ in the direction of the
largest principal stress[22]. We write the transformation criterion as

max {0'1, (417 Um} =0 (38)

where g}, ;; and oy;, are the principal stresses. By using the unperturbed elastic solution for
the stresses, eqn (24), we find the principal stresses as

0
1—sin=

[} 2

oul = Ke cos - 0
J J@rr) "2 | 1+sing

()]

2v

Hence, the leading front R(8) of the transformed region Q is given by

K. 0(1 ,9)_
mcosi +Slﬂ§ =0y

2 (;—:)ZR(O) = [cosg(l +sin g)T (39a)

This expression is valid for 0 < 6 < 0,,, where 8., is the angle at which the tangent to R(§)
becomes parallel to the crack growth direction ; see Fig. 7(b). For 0,,,, < 6 < nthe boundary
of Q is given by

or

H

where H is the half-height of the transformed zone Q. The shape of Q, as given by eqns
(39a) and (39b) is shown in Fig. 8, where we also show the dilatational contour of eqn (36)
for purposes of comparison. From eqns (3%a) and (39b) we easily find that the half-height
H of the wake defined by

H = R(B ) Sin Ornes (40)
is given by
2 H(i’-"-)2 =1.57 @1)
T Km = 1.

and that 8,,,, is equal to 74.8°.
The components of the transformation strain tensor in the coordinate system of the
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Iz~
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R(e)
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© 2
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05 1.0 "%;) }

Fig. 8. Leading front of transformed region for steady-state quasi-static crack growth when trans-
formation occurs at critical value o, of maximum principal stress g;,, eqn (38). For comparison, the
dilatational contour of eqn (36) is also shown (dashed).

principal stress axes are written as

0 0 0
0 & 0} (42)
0 0 0

Thus, we easily find the components of the transformation strain in the coordinate system
of the crack as

- -
\ 30
l—sm7 cos~2§ 0
e’ 30 39
- = in— 43
7 | cos3 1+ sin 5 0 (43)
. 0 0 0]

with the angle 8 shown in Fig. 8. We note that as soon as a material particle crosses the
leading front of Q, it “‘picks up and freezes-in” the transformation strain which is constant
in magnitude but changes in direction as the leading front R() of Q is spanned from 8 = 0
to 8 = 0., (compare (42) and (43)). Thus, the transformation strain within Q depends only
on x, (Figs. 7(b) and 8).

The inelastic strains within the wake are found as

&) = cotf

and we can proceed to find the effective in-plane inelastic strains from eqns (30). Finally,
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we calculate AK,;, by integrating numerically eqn (27) whose integrand is provided by eqns
(28) and (29). We find

AKp=— —— —— ¢’ (44)

Equation (44) is not convenient to use as the magnitude of the critical stress g, required for
transformation is difficult to measure. However, we can eliminate ¢, from eqns (41) and
(44) to get

AK,, = —0.550Ec&",/H. (45)

Comparing eqns (37) and (45) we observe that for a given value of the quantity
Ec”,/H, transformation according to maximum principal stress, eqn (38), predicts tough-
ness enhancement which is considerably in excess of the toughness enhancement predicted
when transformation is according to mean stress, eqn (36).

Next, we briefly outline the way in which AK;; can be calculated for the case of spherical
particles. As in Section 4, we again assume that c,e] is small enough so that the stresses, as
the leading front of the transformed zone Q is approached from outside, are approximately
given by the unperturbed elastic solution, eqn (24). The leading front R(6) of Q is found by
eliminating &, from eqns (32) with F(6;) given by eqn (19) for the case of spherical particles.
Thus, we find

2np}
K2

R(o) = w(() AO)’ 0 < 9 < gle(A O)a (463)

where w is a dimensionless function of its arguments and 8,,, is shown in Fig. 7(b). For
Onax < 0 < 7 the boundary of Q is parallel to the crack growth direction and it is given by

R(O) = Hjsinb, Om <0<, (46b)

where H is the half-height of the wake defined by eqn (41). Eliminating R(f,,,) from eqns
(46a) and (41) yields

2np}d
K’z’ TPy 1 = 6(4y), @7
& being a dimensionless function of 4,.

To calculate the distribution of inelastic strains within Q, we first observe that the
inelastic dilatation is constant within Q and equal to c,tl. Furthermore, the inelastic
deviatoric strains within Q are given by [see eqn (16)]

=c s,,
=36 —p’

where s} is the matrix deviatoric stress evaluated on the leading front R(@) of Q. Thus, the
deviatoric inelastic strains within Q depend only on x, [Fig. 7(b)}: The matrix stresses s}
on R(6) are related to the average deviatoric stresses §; by eqn (34) and, lastly, §; on R(6)
is given by

fy = 6;,--—%6‘,‘,,6;,,

. Ko
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Having found &4 in the manner outlined above, we calculate the effective in-plane inelastic
strains Ef; from eqns (30) and we evaluate the toughness enhancement AKy;, by numerical
integration from eqn (27) with the integrand given by eqns (28) and (29).

The toughness enhancement is shown in two ways: First, by plotting K;;,/K,, vs 4
[Fig. 9(a)] or, by eliminating A, in favor of H by using eqn (47), by plotting AK;,/Ky, vs
Eel./H|K,, [Fig. 9(b)]. Since the quantity 4, is difficult to measure independently, a plot
such as the one in Fig. 9(a) is not of direct use. However, we can draw interesting information
by interpreting A ' as equal to po/Z,, where Z_ is a measure of the level of critical stressing
required for transformation. Thus, we conclude from Fig. 9(a) that to maximize toughening
we need to minimize X, (however, we must still have X, large enough to ensure stress-
induced transformation). Rose[23] has further examined under what conditions on X,
Kp/K o, can be made to vanish for the case of purely dilatational transformation.

The results of Fig. 9(b), including the predictions of eqn (37) for purely volumetric
stress-free strain labeled by “dilatation only”, can be used if the height H of the transformed
zone is known to predict AK,;,. Using typical values for the transformation parameters
(E = 200 GPa, ¢ = 0.04, H = 4x 10~° m, K,;, = 4 MPa,/m) we see that the inclusion of
shear effects gives AK,;;/K,;, = —0.5 whereas pure dilatation predicts AK,;,/K,;, = —0.4.

The same analysis can be carried out for thin oblate spheroidal particles when all
particles are oriented along L,, L, or L; (see Fig. 3): The corresponding results are shown
in Figs. 10, 11 and 12, respectively, for several values of the aspect ratio A of the particles.
Figures 10(b), 11(b) and 12(b) also show the predictions of eqn (37) corresponding to purely
volumetric stress-free strain labeled as “‘only &]”. We observe that the toughness enhance-

KTlP/Koo
Lo

=1

10 20 30

A/ Krip
(b)

Fig. 9. Toughness enhancement by spherical particles (v = ¢, = 0.3): (8) K/ K, vs 45 ', (b) AK /Ky,
vs Ee[./H/K,,. For comparison, the purely dilatational result is also shown[14).
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< contribation,”
© & Ao2

A=0.1,0.2

s M OKyyp/ Kppp

(a) (b)

Fig. 10. Toughness enhancement by oblate spheroids (orientation L,, v = ¢, = 0.3, aspect ratio 1):
(@) Kip/Ko vs A7, (b) AK,/Ky, vs Eel/H[K,,. For comparison, the purely dilatational result is
also shown[14].

ment due to orientation L, is considerably greater than the toughness enhancement due to
Lz or L3.

We end this section by considering the simplified form of the constitutive law applicable
to thin oblate spheroids which is presented in eqns (A3) and (A4) of the Appendix. In the
simplified constitutive law, the inelastic strains are constant within the wake. Thus, the

Krip /Koo

0.5 i

10 20

~

o~ mglects s .

-087 = ™~ eontribatiol
to e,Pj

(b)

Fig. 1. Toughness enhancement by oblate spheroids (orientation L,, v = ¢, = 0.3, aspect ratio
A=0.2): (8) Ki/K, vs A7 %, (b) AK/Kyi, V5 Ee]./H|K,,. For comparison, the purely dilatational
result is also shown[14].
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BKyp/Kppp

(b}

Fig. 12. Toughness enhancement by oblate spheroids (orientation Ly, v = ¢, = 0.3, aspect ratio 1):
() Kip/K., vs A5', (b) AKy /Ky, vs Es[/H[K,, For comparison, the purely dilatational result is
also shown([14].

toughness enhancement can be found analytically rather than by numerical integration,
The results of the use of the simplified constitutive law are shown in Figs. 10(b), 11(b) and
12(b) labeled by “neglects s5;; contribution to . From these figures we observe that the
predictions of the simplified version are in reasonably good agreement with the predictions
of the more involved constitutive law of eqns (A1) and (A2) of the Appendix. The agreement
is better for orientations L, and L,; the simplified version of the constitutive law for
orientation L, underestimates the results of the more precise analysis presented earlier ; see
Fig. 10(b). However, due to its simplicity, we will use the simplified version in the next
section in which we will discuss some experimental data.

6. DISCUSSION

There are several ceramic systems in which the transformation of ZrQ, particles from
tetragonal to monoclinic is used advantageously in order to enhance the fracture toughness
of the composite ceramic. The two most widely studied ceramic systems where such trans-
formation is exhibited are either partially stabilized zirconia (PSZ) within a cubic ZrO,
matrix, or ZrO, particles within an A1,0, matrix. Since the morphology of the ZrO, particles
is dependent on the nature of the constraining matrix, these two systems will be discussed
separately by using the results of Section 5.
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Before proceeding, we pause to comment on the physical meaning of K, in the relation
Kip = K+ AKyp.

It has been shown[3, 8] that the toughness of a ceramic in which all ZrO, particles are
transformed to monoclinic prior to the introduction of the crack is higher than the toughness
of the material when no ZrO, particles are allowed to transform from tetragonal to
monoclinic. The difference is attributed to the nature of the compressive stresses induced
in the matrix due to the transformation which cause the subsequently introduced crack to
deflect and bow out of its original plane. We account for the difference in toughness by
identifying K,;, as the fracture toughness of the material when all the ZrQ, particles are
transformed to monoclinic prior to the introduction of the crack.

When the constraining matrix is ALO, the ZrO, particles are approximately spheri-
cal in shape[5, 17]. Since Young’s modulus of Al,Q, is different from that of ZrO,,
we get an approximate value of the toughness enhancement by identifying E with the
Young’s modulus of the composite. Using ¢, = 0.3, E =315 GPa {5], ¢ = 0.04 [14],
H=1x10"*m[5] and K, = 5 MPa/m [5], we find

EeT.
ElJH _, ¢
Kﬁp

Thus, eqn (37) (purely volumetric transformation) predicts AK,, = —1.2 MPa/m, Fig.
9(b) (volumetric and shear stress-free strain) predicts AK;;, = —1.7 MPa /m and eqn (44)
(transformation along maximum tensile axis) predicts AK,, = —2.1 MPa,/m. The experi-
mentally measured value is AK,;, = —2.4 MPa,/m [5].

Another system of ZrO, particles within Al,O; has E = 470 GPa, ¢, = 0.3, el = 0.4
and H = 5x10"° m [14]. Equation (37) predicts AK;, = —3.8 MPa,/m, Fig. 9(b) with
Kip=6 MPa\/m yields AK,, =—4.5 MPaJm, whereas eqn (44) predicts AK;, =
— 6.8 MPa,/m. The measure value is AK, = —6 MPa,/m [14].

In the PSZ system the ZrQ, particles are thin oblate spheroids oriented so that approxi-
mately one-third of the total volume concentration is along each of the principal planes of
the cubic matrix[12]. It is observed that macroscopic cracks in such materials grow along
the aforementioned principal planes. Thus, assuming that the total volume concentration
of the ZrO, particles is ¢, = 0.3, particles of volume concentration ¢; = 0.1 are along
orientation L; (i = 1, 2, 3) where the three orientations L; with respect to the crack are
shown in Fig. 3.

When all three orientations are present, the overall transformed region Q is comprised
of subregions £, within which one, two or all three orientations have transformed. We study
this mixture of orientations by employing the simplified constitutive law of eqns (A3) and
(A4) of the Appendix. Furthermore, we assume that cee] is sufficiently small so that
transformation within £, does not alter the state of stress near the leading front R;(8) of §;
from the unperturbed elastic solution given by eqn (24). The use of the simplified version
of the constitutive law in the form

IAZZS' +6 constant
_ 22 = 0o =
2A“ 33 m 4

allows the determination of the leading fronts R,(8) of the transformed subregions Q; The
different regions are shown in Fig. 13; the height of each wake is given by

1 (KoY}
H:= 51};(‘0:), (48)

where i = 1, 2, 3 according as to whether the orientation of the particles is L;, L, or L.
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Fig. 13. Transformed region for steady-state quasi-static crack growth when all three orientations
L,, L, and L, are present. Results based on the simplified constitutive law for oblate spheroids.

The numerical values of the coefficients are
6, = 0.867, 9, =0.359, 6, = 0.366.

The distribution of inelastic strains is constant within each €, and it is given by eqn (A3)
with dc replaced by ¢,. The effective in-plane inelastic strains are found from eqns (30) and,
thus, AK{}), the contribution to toughness due to orientation L; within Q,, can be evaluated
analytically from the double integral of eqn (27). We found

Ko
AK§, =— ﬂ.-ESZ,,..c,-—a— (nosumon i)
0

with
B, =0.172, B, =0.0651, B, = 0.0540

for v = 0.3 and for the aspect ratio A = 0.2. The net toughness enhancement is
3
AKﬁp = Z AK{,‘},
im]
which, upon elimination of ¢, with the help of (48), is found as

AK,, = —0082Ecl/JH (H=H), (49)

where we have identified H with H,, the largest of the three heights H, as can be seen from
Fig. 13. Equation (49) is plotted together with eqn (37) in Fig. 14 for v = 0.3 and ¢, = 0.3.
It is seen that the combination of the three orientations L, predicts slightly lower toughness
enhancement than the purely volumetric case. It must be borne in mind, however, that the
contribution due to L; as found from the simplified constitutive law, eqns (A3) and (A4)
of the Appendix, underestimated the more exact resuit (compare Fig. 10(b)). Thus, we
conclude from Fig. 14 that a combination of all L, yields essentially the same toughness
enhancement as the purely volumetric case and, hence, the conclusions of Budiansky et
al.[14] in comparing the predictions of eqn (37) with experimental data on PSZ are still
valid : Equation (37) predicts that the value of the toughness enhancement is approximately
one-third of the experimentally determined value.
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Fig. 14, Tqughncss enhancement AK,, vs EeJH (v = ¢, = 0.3) for steady-state quasi-static crack
growth as induced by the presence of all three orientations L,, L, and L,. For comparison, the
purely dilatational result is also shown[14].

The agreement between theory and experiment may be brought closer if finite values
of coeff are considered. Budiansky er al.{14] showed that the height of the transformed zone
decreases compared to the unperturbed height as cet] increases. Thus, the value of H
applicable in eqn (44) is not the actually measured height of the transformed zone but a
larger number. A similar idea has been proposed by Evans and Heuer[1], who related the
height Hr of the actual transformed zone to the height H. of the unperturbed zone by

Hr=n(coH.. (50)

Identifying H of (44) with H, of (45), Swain er al.[7] showed that the experimentally found
AK;, correlates well with \/Hr.

7. CONCLUSIONS

We have analyzed the effects of shear, shape and orientation in transformation tough-
ening by proposing a continuum constitutive relation in the same spirit as metal plasticity
by essentially “smearing out” the effect of transformed particles over the whole transformed
region. We have shown that consideration of shear effects brings predicted values of
toughness enhancement in good agreement with experimental results when the ZrO,
particles are spherical. The agreement is not as good when oblate spheroidal particles are
considered although we have identified an orientation that is decidedly more beneficial than
the others.

We conclude by suggesting that further work is necessary to establish the validity of
the continuum approach presented herein. The transformed zone may span from 3-5 to as
many as 50 transformed particles and it is obvious that for the former case the continuum
assumption may not be valid. It is also possible that a more careful analysis may be
necessary of the mechanics of the shear band formation within the twinned transformed
particles. However, we do believe that the present way of accounting for the shear in the
particles is an effective approximation which should overestimate the effect of the shear
component of the transformation. Given that the shear effect is predicted to be of secondary
importance compared to the contribution of the dilatational transformation, the present
approach may be adequate.
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APPENDIX

For the case of thin oblate spheroidal particles of semiaxes a, = a,> a,, the function F(s)) is given by

(=2)43)
To To
on  Ajnsh

+—+
0 Aute

9l—v) 1 (s¥Y 11
Rai) 8(l+v)A,,<t° *34,,
e
To To

4, (Al)

and the flow rule is
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where
To = Gez
and
1+4v3nd 3nd
A"=1_1+VT’ A22=1"_4--
~2—v1tl 4 __2—v1:l
R BTIv e

with 4 being the aspect ratio 2,/a, « 1.
When the terms proportional to s) in eqn (14) or (A2) are dropped, the constitutive law is greatly simplified

for the case of thin oblate spheroids; it becomes

VA5,
Fo} =§I—s33+a,,‘f, (A}
def = ¢] de,
de’.,=de‘52=—§~2-e de,
245 (A9
- T
de‘;; 3..4”6 de,

def=0 fori#j



